TY - JOUR KW - Peer Reviewed Paper KW - Checked AU - Gandevia S. AU - Hoang P. AU - Herbert Rob AU - Todd G. AU - Gorman R. AB -

The study of muscle growth and muscle length adaptations requires measurement of passive length-tension properties of individual muscles, but until now such measurements have only been made in animal muscles. We describe a new method for measuring passive length-tension properties of human gastrocnemius muscles in vivo. Passive ankle torque and ankle angle data were obtained as the ankle was rotated through its full range with the knee in a range of positions. To extract gastrocnemius passive length-tension curves from passive torque-angle data it was assumed that passive ankle torque was the sum of torque due to structures which crossed only the ankle joint (this torque was a 6-parameter function of ankle joint angle) and a torque due to the gastrocnemius muscle (a 3-parameter function of knee and ankle angle). Parameter values were estimated with non-linear regression and used to reconstruct passive length-tension curves of the gastrocnemius. The reliability of the method was examined in 11 subjects by comparing three sets of measurements: two on the same day and the other at least a week later. Length-tension curves were reproducible: the average root mean square error was 5.1+/-1.1 N for pairs of measurements taken within a day and 7.3+/-1.2 N for pairs of measurements taken at least a week apart (about 3% and 6% of maximal passive tension, respectively). Length-tension curves were sensitive to mis-specification of moment arms, but changes in length-tension curves were not. The new method enables reliable measurement of passive length-tension properties of human gastrocnemius in vivo, and is likely to be useful for investigation of changes in length-tension curves over time.

BT - Journal of Biomechanics C1 - 2.542 C2 - 2.897 CN - N DA - 129821357875 J2 - J Biomech LA - eng LB - MSjournal M1 - 6 N1 - HERDC category C1 N2 -

The study of muscle growth and muscle length adaptations requires measurement of passive length-tension properties of individual muscles, but until now such measurements have only been made in animal muscles. We describe a new method for measuring passive length-tension properties of human gastrocnemius muscles in vivo. Passive ankle torque and ankle angle data were obtained as the ankle was rotated through its full range with the knee in a range of positions. To extract gastrocnemius passive length-tension curves from passive torque-angle data it was assumed that passive ankle torque was the sum of torque due to structures which crossed only the ankle joint (this torque was a 6-parameter function of ankle joint angle) and a torque due to the gastrocnemius muscle (a 3-parameter function of knee and ankle angle). Parameter values were estimated with non-linear regression and used to reconstruct passive length-tension curves of the gastrocnemius. The reliability of the method was examined in 11 subjects by comparing three sets of measurements: two on the same day and the other at least a week later. Length-tension curves were reproducible: the average root mean square error was 5.1+/-1.1 N for pairs of measurements taken within a day and 7.3+/-1.2 N for pairs of measurements taken at least a week apart (about 3% and 6% of maximal passive tension, respectively). Length-tension curves were sensitive to mis-specification of moment arms, but changes in length-tension curves were not. The new method enables reliable measurement of passive length-tension properties of human gastrocnemius in vivo, and is likely to be useful for investigation of changes in length-tension curves over time.

PY - 2005 SE - 2.897 SP - 1333 EP - 1341 ST - J. Biomech.J. Biomech. T2 - Journal of Biomechanics TI - A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo VL - 38 ER -